
Software Certification Management

How Can Formal Methods Help?

Dieter Hutter
German Research Centre for Artificial Intelligence (DFKI GmbH),

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany,
e-mail: hutter@dfki.de

Abstract

The formal development of industrial-size software
is an error-prone and therefore evolutionary process.
We report on our efforts to implement an assistance
tool that helps us to anticipate the effects of changes
in formal specification, to retrieve existing specifica-
tions and adapt them to new situations, to deter-
mine the “minimal” sets of proof obligations that
will newly arise or which proofs have to be re-tackled
again, and to adjust the old proofs to the new con-
ditions. As a result of this work we outline an un-
derlying theoretical framework for a general repos-
itory to maintain mathematical or logic-based doc-
uments while keeping track of the various semanti-
cal dependencies between different parts of various
types of documents (documentations, specifications,
proofs, etc).

1 Introduction

In the last decade Formal Methods have been success-
fully applied to specify and verify security or safety
critical systems. In the area of security, the formal
specification (and partly also verification) of smart-
cards became a necessity to comply with the security
requirements of their users. Car manufacturers start
to use formal methods to get the more and more com-
plex devices and sophisticated interaction between
them under control. Formal software development
paradigms are closely related to the waterfall model.

Starting with a formal (textual) specification, it is
translated into a logic based formalism, proof obli-
gations are calculated to guarantee the security or
safety properties, and finally these obligations have
to be proven usually with the help of model checking
or theorem proving. However in all applications so
far, development steps turned out to be flawed and
errors had to be corrected. The search for formally
correct software and the corresponding proofs is more
like a formal reflection on partial developments rather
than just a way to assure and prove more or less ev-
ident facts. Figure 1 illustrates this typical process.

Generating proof obligations +
structured database

Changing specification
due to proof failures Translation to a

logical representation

Specification
(Text)

Specification
(Text)

Deduction
(Proof Calculi)
Deduction
(Proof Calculi)

Logic Representation
(Development Graph)

Generating proof obligations +
structured database

Changing specification
due to proof failures Translation to a

logical representation

Specification
(Text)

Specification
(Text)

Deduction
(Proof Calculi)
Deduction
(Proof Calculi)

Logic Representation
(Development Graph)

Figure 1: Formal Development Cycle

1

2 Development Graphs

The painful experience of this evolutionary charac-
ter of applying formal methods resulted in the de-
velopment of the MAYA system [2, 3] to maintain
the formal software development process. We envi-
sioned an assistance tool that helps us to anticipate
the effects of changes in the specification, to retrieve
old specifications and adapt them to new situations,
to determine the “minimal” sets of proof obligations
that will newly arise or which proofs have to be re-
tackled again, and to adjust the old proofs to the new
conditions.

MAYA was a first step towards such a system. It
supports an evolutionary formal development since
it allows users to specify and verify developments in
a structured manner, incorporates a uniform mecha-
nism for verification in-the-large to exploit the struc-
ture of the specification, and maintains the verifi-
cation work already done when changing the spec-
ification. Maya relies on development graphs as a
uniform representation of structured specifications,
which enables the use of various (structured) speci-
fication languages like Casl [4], OMDoc and Vse-

SL [6] to formalize software development. To this
end Maya provides a generic interface to plug in ad-
ditional parsers for the support of other specification
languages. Moreover, Maya allows the integration of
different theorem provers to deal with proof obliga-
tions arising from the specification, i.e. to perform
verification in-the-small.

Textual specifications are translated into a struc-
tured logical representation called a development

graph [1, 5], which is based on the notions of con-
sequence relations and morphisms and makes arising
proof obligations explicit. The user can tackle these
proof obligations with the help of theorem provers
connected to Maya like Isabelle [12] or Inka [8].

A failure to prove one of these obligations usually
gives rise to modifications of the underlying specifica-
tion. Maya supports this evolutionary development
process as it calculates minimal changes to the logi-
cal representation readjusting it to a modified spec-
ification while preserving as much verification work
as possible. If necessary it also adjusts the database
of the interconnected theorem prover. Furthermore,

Maya communicates to the attached provers explicit
information how the axiomatization has changed and
also retrieves former proofs of the same problem (that
are now invalidated by the changes) to allow the the-
orem provers to reuse them. In turn, information
provided by the theorem provers about the computed
proof is used to optimize the maintenance of proofs
during the evolutionary development process.

3 Transformational Develop-

ment

While MAYA supports the adaption of formal de-
velopments to changed specifications, it primarily fo-
cuses on the computation of differences between old
and new specification and to maintain and propagate
these changes along the development cycle illustrated
in Figure 1. However, due to the complexity of this
process there is no guarantee that “simple” changes
in the specification will be adequately supported by
the system when it comes to the adaptation of proofs.
Starting with [14] we worked also on defining build-
ing blocks to transform developments as a whole. The
idea is to incorporate the knowledge about the way a
specification is changed into rules how to adapt the
existing proofs simultaneously. This results in a set
of basic transformations operating on developments
and changing specifications together with their proof
obligations and proofs in parallel and returning an
adapted new development. Typical examples are the
change of abstract datatypes by adding or removing
constructors, the change of parameters of function
and predicates, and the change of axioms by adding
or removing conditions [13]. Using these basic trans-
formations allows a developer to predict the effects of
his changes to the entire development since each of
these basic transformations will change specification,
proofs and proof obligations in a predetermined and
controlled fashion.

4 A More General Approach

Developing the MAYA system, which is specialized
to the maintenance of formal developments based on

2

algebraic specifications, we realized that the underly-
ing methodology is rather general and independent of
the used logical representation of specifications and
proofs but relies heavily on the structure of depen-
dencies between objects and properties and how these
dependencies can be decomposed along a given struc-
ture.

Nats
Spec N a t =
f r ee t y pe N a t : : = 0 | s u cc(N a t)

O p: ≤ : N a t , N a t → B o o l ea n
∀x : n a t 0 ≤ s u cc(x) . . .

O p: pl u s : N a t → N a t
∀x : n a t pl u s (0 , x) = x . . .

L i st o f Nats
Spec L i s t =
f r ee t y pe L i s t : : = n i l | co n s (N a t , L I ST)

O p: s o r t ed : L i s t → B o o l ea n
∀x , y : n a t , z : L i s t

s o r t ed (co n s (x , co n s (y , z))) → x ≤ y . . .

O p: r ev er s e : L i s t → L i s t
r ev er s e(n i l) = n i l . . .

Imports: Nats

Nats
Spec N a t =
f r ee t y pe N a t : : = 0 | s u cc(N a t)

O p: ≤ : N a t , N a t → B o o l ea n
∀x : n a t 0 ≤ s u cc(x) . . .

O p: pl u s : N a t → N a t
∀x : n a t pl u s (0 , x) = x . . .

L i st o f Nats
Spec L i s t =
f r ee t y pe L i s t : : = n i l | co n s (N a t , L I ST)

O p: s o r t ed : L i s t → B o o l ea n
∀x , y : n a t , z : L i s t

s o r t ed (co n s (x , co n s (y , z))) → x ≤ y . . .

O p: r ev er s e : L i s t → L i s t
r ev er s e(n i l) = n i l . . .

Imports: Nats

Figure 2: Semantic Dependencies in Specifications

In formal developments the semantics of (struc-
tured) objects depends on the semantics of their sub-
objects used for their definition (axiomatic dependen-
cies). While there is no way to scrutinize changes of
axiomatic dependencies in case of intentional (or pur-
poseful) changes of the development, there is a need
to inspect axiomatic dependencies in case of mechan-
ical changes as they occur, for instance, during the
(automatic) merge of two branches of a development.

Properties between (structured) objects can be
postulated and proven within a development. Sim-
ilar to the objects under consideration, the proofs
of properties about such objects are also structured.
Hence, such a proof depends on (or decomposes into)
properties of sub-objects which gives rise to deduced

dependencies between different properties. Changing
the development may render proofs invalid since ei-
ther some basic property does no longer hold or the
way the problem was decomposed is no longer appro-
priate.

The ability to decompose properties along the
structure of the concerned objects allows us to lo-
calize the effects of changes. A property between
structured objects (theories) is decomposed (accord-
ing to some decomposition rules) to properties be-
tween their sub-objects (local axioms). Typically,
these properties between structured objects have to

be independent of the environment in which these
objects might occur. As long as the concerned struc-
tured objects are unchanged any change of the over-
all development will not inflict the already proven or
postulated properties between these objects.

5 Repository Supporting Dis-

tributed Development

As a consequence we now work on a repository [7]
to maintain all sorts of dependencies between vari-
ous parts of a formal development or even informal
documents [9]. The main goal of such a logic-based
repository is to ease the development of mathemat-
ical or logic based knowledge consisting of entities
such as axioms, definitions, theorems, proofs and in-
formal documentations (sometimes including seman-
tic annotations). As the development of a software
project or of mathematical knowledge is distributed,
also the repository has to support distributed de-
velopments. We propose a CVS-like infrastructure
to determine the differences between two versions,
to calculate the necessary changes to update a lo-
cal repository to the current state, and to integrate
two rival developments into a merged variant. How-
ever while text-lines might be appropriate to struc-
ture pure text documents, this approach fails com-
pletely in logic-based documents. A single text line
may contain independent terms or a single term could
be spread over many text lines. Undiscovered “se-
mantic” conflicts may occur if two users change dif-
ferent text lines that are both part of the description
of a single term. Changing the arity of a signature
symbol in a document typically requires to change its
arity in all the occurrences of the symbol. Therefore,
we use the more semantically adequate representation
of acyclic directed graphs as the general structure un-
derlying the documents under consideration and re-
define the CVS notions of diff, patch and merge in
this context.

In a second phase we add semantical dependen-
cies between different parts of a document to detect
semantical conflicts, for instance, when merging dif-
ferent versions of a document that result from chang-

3

ing different but semantically still dependent parts of
a document by different users. When merging docu-
ments, semantic conflicts occur if semantically related
documents are changed independently by two users.
Decomposing dependencies along the structure of the
objects allows one again to narrow down potential se-
mantic conflicts: conflicts of composed objects only
arise if there is a conflict between dependent sub-
objects.

6 Conclusion

Inspecting the ideas of MAYA we discovered that
most of the work related to the management of
change does not require a deep knowledge of the se-
mantics of the underlying specification languages. In-
stead the management of change solely operates on
the structure of the objects under consideration and
on how proposed properties can be decomposed to
properties of their sub-objects.

The ultimate goal is to support generic structur-
ing mechanisms as they occur in various domains
by developing a system supporting these mechanisms
while outsourcing application specific parts into mod-
ules attachable to the system. This would allow us
to instantiate such a system for various purposes,
like for instance in formal methods (cf. MAYA [2]),
program development, or even maintaining informal
documents like, for instance, course materials (cf.
MMISS [9]).

References

[1] S. Autexier, D. Hutter, H. Mantel, and A. Schairer. To-
wards an evolutionary formal software-development using
Casl. In Recent Developments in Algebraic Development
Techniques, WADT’99, Bonas, France, Springer LNCS
1827, 2000.

[2] S. Autexier, D. Hutter, T. Mossakowski and A. Schairer.
The Development Graph Manager MAYA. In Proceedings
9th International Conference on Algebraic Methodology
And Software Technology, AMAST2002. Springer, LNCS
2422, 2002

[3] S. Autexier and D. Hutter. Mind the Gap - Maintaining
Formal Developments in MAYA, In Mechanising Math-
ematical Reasoning, Essays in honor of J.H. Siekmann,
Springer-Verlag, LNCS 2605, 2005

[4] B. Krieg-Brückner and P. Mosses (eds). CASL Reference
Manual, Springer, LNCS 2960, 2004

[5] D. Hutter. Management of Change in Verification Sys-
tems. In Proceedings 15th IEEE International Conference
on Automated Software Engineering, ASE-2000, IEEE
Computer Society, 2000.

[6] D. Hutter et al. Verification Support Environment (VSE),
Journal of High Integrity Systems, Vol. 1, pages 523–530,
1996.

[7] D. Hutter. Towards a Generic Management of Change. In
Workshop on Computer-Supported Mathematical Theory
Development, International Joint Conference on Auto-
mated Reasoning’04, Cork, Ireland, 2004

[8] S. Autexier, D. Hutter, H. Mantel, A. Schairer: Sys-
tem Description: INKA 5.0 - A Logic Voyager. In
H. Ganzinger, CADE-16, Springer, LNAI 1632, 1999.

[9] B. Krieg-Brückner, D. Hutter, C. Lüth, E. Melis,
A. Pötsch-Heffter, M. Roggenbach, J. Smaus and
M. Wirsing. Towards MultiMedia Instruction in Safe and
Secure Systems. In: Recent Trends in Algebraic Devel-
opment Techniques, (WADT-02). Springer, LNCS 2755,
2003

[10] T. Mossakowski and P. Hoffman and S. Autexier and
D. Hutter. Part IV: CASL Logic. In: [4], 2004

[11] T. Mossakowski, S. Autexier, and D. Hutter. Develop-
ment Graphs – Proof Management for Structured Speci-
fications. Journal of Logic and Algebraic Programming,
Special Issue on Algebraic Specification and Development
Techniques, Elsevier, 2005 (forthcoming)

[12] L.C. Paulson. Isabelle - A Generic Theorem Prover,
Springer LNCS 828, 1994.

[13] A. Schairer. Transformations of Specifications and Proofs
to Support an Evolutionary Formal Software Develop-
ment. PhD thesis (submitted), Saarland University, 2005

[14] A. Schairer and D. Hutter Proof Transformations for Evo-
lutionary Formal Software Development. In: Proceedings
of the 9th International Conference on Algebraic Method-
ology And Software Technology, AMAST-2002, LNCS
2422, 2002

4

